
Docbook In Context

A Context XML Mapping

for Docbook Documents

Simon Pepping

EuroTeX 2003, Brest, 24 June 2003

close

Usage

1 Usage

close

Usage

1.1 What is Docbook In ConTEXt?

Two technologies

• Docbook: authoring, structuring

• ConTEXt: layout, rendering

brought together

close

Usage

1.1.1 What is Docbook?

Docbook is an extensive DTD for technical literature, books and articles. It is
becoming more and more popular for software documentation, e.g. the Linux
Documentation Project.

The Docbook DTD files:
docbookx.dtd The main DTD file
dbhierx.mod The hierarchical elements: book, article, chapter, etc.
dbpoolx.mod The pool of other elements
dbcentx.mod The character entities
dbgenent.mod The generic entities
dbnotnx.mod The notations
calstblx.dtd The CALS table model
soextblx.dtd The SO Exchange table model (not used)

close

Usage

1.1.2 A short Docbook article

<?xml version="1.0" ?>

<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"

"docbookx.dtd" []>

<article>

<articleinfo>

<title>DocBook In ConTeXt, ConTeXt XML mapping for DocBook

documents</title>

<authorgroup>

<author>

<firstname>Simon</firstname>

<surname>Pepping</surname>

</author>

<author>

<firstname>Michael</firstname>

<surname>Wiedmann</surname>

</author>

</authorgroup>

</articleinfo>

close

Usage

<section>

<title>Installation</title>

<para role="first">Change directory to the top directory

of one of the <literal>texmf</literal> trees of your

TeX installation, e.g. <filename>/usr/share/texmf</filename>,

and <command>untar</command> the distribution file

<filename>DocbookInContext.tar.gz</filename>. Then run the command

<command>mktexlsr</command> for that tree,

e.g. <command>mktexlsr /usr/share/texmf</command>.</para>

</section>

<section>

<title>Usage</title>

<programlisting>

\input xtag-docbook

\setupheadertexts[section][pagenumber]

\setupheader[leftwidth=.7\hsize,style=slanted]

</programlisting>

</para>

</section>

</article>

For the result see README.

close

Usage

1.2 How did it start and where is it now?

Start

EuroTeX 2001, Kerkrade: ConTEXt presentations

Context mailing list: ConTEXt XML input

That made me curious enough to dive into it.

Michael Wiedmann was interested and supported me to go on.

Now

How is ConTEXt possible?

Theoretically TEX macro programming is complete. Hans Hagen can turn this
theory into practice.

Docbook In ConTEXt works for a number of frequently used elements.

Docbook In ConTEXt has a framework for some fundamental issues.

close

Usage

1.3 Running Docbook In ConTEXt

To run a file myfile.xml, create a driver file myfile.tex:

\input xtag-docbook

\starttext

\processXMLfilegrouped{\jobname.xml}

\stoptext

and run it:

$ texexec myfile.tex

Without a driver file:

texexec --xmlfilter=dbk myfile.xml

But that would only work if the module were called xtag-dbk.tex

close

Usage

1.4 Customizing Docbook In ConTEXt

Docbook In ConTEXt creates a ConTEXt file on the fly. Customize it in the
usual way (in the driver file):

\input xtag-docbook

\setupindenting[medium]

\setupheadertexts[section][pagenumber]

\setupheader[leftwidth=.7\hsize,style=slanted]

\setuppagenumbering[location=]

\setupitemize[each][packed][before=,after=,indentnext=no]

\setupcombinedlist[content][level=section]

\setuphead[subsection][number=no]

\starttext

\processXMLfilegrouped{\jobname.xml}

\stoptext

There are also DIC-specific customization options.

close

Usage

1.4.1 Section blocks

• \setupXMLDB[pagebreaks=all]: Default ConTEXt behaviour.

• \setupXMLDB[pagebreaks=sectionblocks]: ToC and Index do not start
a new page, and they are treated as sections. All other section blocks retain
their default ConTEXt behaviour.

• \setupXMLDB[pagebreaks=none]: In addition to the sectionblocks op-
tion, bodymatter, appendices and backmatter do not start a new page.

close

Usage

1.4.2 Titles

\def\XMLDBarticletitle#1%

{\startalignment[left]\bfb #1\stopalignment \blank}

\def\XMLDBabstracttitle#1%

{\blank[big]\midaligned{\bf #1}\blank[medium]}

\def\XMLDBrevhistorytitle#1%

{\blank[big]\midaligned{\bf #1}\blank[medium]}

close

Usage

1.4.3 Section titles

Chapter, section, subsection, etc. titles are mapped onto ConTEXt’s usual
sectioning commands:

\def\XMLDBchaptertitle{\chapter[\XMLpar{\XMLparent}{id}{}]}

% chapter or section

\def\XMLDBappendixtitle{\XMLDBmakechapter}

\expandafter\def\csname XMLDBsect1title\endcsname%

{\section[\XMLpar{\XMLparent}{id}{}]}

% nested sections

\expandafter\def\csname XMLDBsectionhead-1\endcsname%

{\section[\XMLpar{\XMLparent}{id}{}]}

They can be customized in ConTEXt, e.g.

\setupcombinedlist[content][level=section]

\setuphead[subsection][number=no]

close

Usage

1.4.4 blockquote, epigraph and attribution

\setupblockquote[narrower=middle,quote=on,command={--- \it}]

• narrower. Both epigraph and blockquote are formatted using ConTEXt’s
narrower environment. The value of this option is a list of left, right
and middle that is passed on to the \startnarrower command. See the
ConTEXt documentation for \startnarrower for the effect of these settings.

• quote. The value is on or off. When on, quotation marks are applied as
with ConTEXt’s quotation environment.

• command. The value is a command or set of commands, which are applied
at the start of the narrower environment.

close

Usage

1.4.5 Unconstrained attribute values

Example: The role attribute of any element.

Preprogrammed actions are not possible, because the possible values are not
known.

Insert a hook in the stylesheet for the user’s own formatting command.

Stylesheet: \XMLattributeaction[para][role]

User: \defineXMLattributeaction[para][role]action

Example:

• Customization command:

\defineXMLattributeaction[para][role][first]{\bf}

• In the XML file:

<para role="first">

close

Usage

1.4.6 Example

We add a number of DIC-specific customization options:

\input xtag-docbook

\setupindenting[medium]

\setupheadertexts[section][pagenumber]

\setupheader[leftwidth=.7\hsize,style=slanted]

\setuppagenumbering[location=]

\setupitemize[each][packed][before=,after=,indentnext=no]

\setupcombinedlist[content][level=section]

\setuphead[subsection][number=no]

% customizations

\setuphead[section][style=bia,number=no,align=right]

\setupepigraph[narrower={1*right},command=\bi]

\setupattribution[command=---]

\setupXMLDBlists[notoc]

\setupXMLDB[background=off]

\def\XMLDBarticleinfotitle#1%

{\startalignment[middle]\bib #1\stopalignment\blank[1*big]}

\defineXMLattributeaction[para][role][first]{\bf}

For the result see README2.

close

Usage

1.4.7 More customizations

will follow See the file Customization.

close

Usage

1.4.8 Writing your own module

\input xtag-docbook

\defineXMLenvironment[mediaobject]

{\XMLDBpushelement\currentXMLelement \XMLDBmayensurebodymatter

\bgroup

\defineXMLignore[objectinfo]% processing suppressed

\defineXMLsave[videoobject]%

\defineXMLsave[audioobject]%

\defineXMLsave[textobject]%

\defineXMLsave[caption]}

{\expanded

{\placefigure

[here,\XMLDBfigurealign]

[\XMLpar{\XMLparent}{id}{}]

{\XMLflush{title}}

{\externalfigure[\XMLDBimagedata]

[factor=\XMLDBimagescalefit,%

scale=\XMLDBimagescale]}}%

\egroup

\XMLDBpopelement}

Example: m-docbook by Richard Rascher-Friesenhausen.

close

Usage

1.5 Other tools for the same task

• XML −→
XSLT

FO −→
FO processor

type

• XML −→
XSLT

ConTEXt file −→
ConTEXt

type

close

Usage

1.5.1 Canonical tool

XML −→
XSLT

FO −→
FO processor

type

XSLT stylesheets for Docbook by Norman Walsh:
large coverage, customization through extensive parametrization

XSLT + FO: one stylesheet, many processors

FO processors: FOP, xmltex + passivetex

xmltex: David Carlisle’s XML processor

passivetex: Callbacks for FOs (DIC: callbacks for Docbook)

Neither FOP nor passivetex run Docbook XSLT stylesheets without errors

close

Usage

1.5.2 Non-orthodox tool

XML −→
XSLT

ConTEXt file −→
ConTEXt

type

db2context

Customizability: Edit the ConTEXt file.

close

Programming

2 Programming

close

Programming

2.1 Programming Docbook In ConTEXt

close

Programming

2.1.1 ConTEXt and XML

A typical mapping instruction:

\defineXMLenvironment[element]{start action}{stop action}.

Accessing the attribute values of the element:

\doifXMLvar{entry}{align}%

{\expanded{\setupTABLE[align=\XMLvar{entry}{align}{}]}}

Timing of expansion requires attention: \expanded

close

Programming

2.1.2 It is easy, is it not?

A simple mapping:

\defineXMLenvironment[subtitle]

{\startalignment[middle]\bfb}

{\stopalignment\blank[2*big]}

A slightly less simple mapping. Generate the correct separators and pay at-
tention to the spaces:

\defineXMLenvironment[firstname]{\XMLDBseparator}{\XMLDBdospaces}

\defineXMLenvironment[surname]{\XMLDBseparator}{\XMLDBdospaces}

close

Programming

2.2 Encoding and language

Declaration of encoding:

<?xml version="1.0" encoding="iso-8859-1"?>

Reading the encoding:

\defineXMLprocessor[xml] \setencoding

\def\setencoding#1{\dogetXMLarguments{xml}#1>

\setevalue{\??xmldbenc}{\XMLvar{xml}{encoding}{utf}}}

Declaration of language:

<article lang="de">

Reading the language:

\XMLDBstartdocument{\XMLpar{\currentXMLelement}{lang}{en}}

Using it all:

\def\XMLDBstartdocument#1{%

\expanded{\enableregime[\getvalue{\??xmldbenc}]}

\mainlanguage[#1]%

\disableXML\readfile{xtag-docbook-literals-#1}{}{}\enableXML

}

close

Programming

2.2.1 The literal strings

\def\XMLDBAbstract{Zusammenfassung}

\def\XMLDBabstract{Zusammenfassung}

\def\XMLDBAnswer{A:}

\def\XMLDBanswer{A:}

\def\XMLDBGlossSeeAlso{Siehe Auch}

\def\XMLDBGlossSeealso{Siehe auch}

\def\XMLDBglossseealso{siehe auch}

Compare the english and german versions of the same text.

close

Programming

2.3 Features for each element

close

Programming

2.3.1 Context stack

\defineXMLenvironment[xxx]

{\XMLDBpushelement{\currentXMLelement}}

{\XMLDBpopelement}

Access to the stack:

• \XMLDBcurrentelement: The current element’s name.

• \XMLancestor#1: The name of the ancestor at level #1 The current element
is at level 0.

• \XMLparent: The name of the current element’s parent.

• \the\XMLdepth: The depth of the context stack.

• \doifXMLdepth#1: Execute the following instruction if the context stack
has a certain depth.

• \XMLDBprintcontext: Print the context stack in the log file (mainly for
debugging purposes).

Example

XMLcontext : article, section, section, variablelist, para, itemizedlist

close

Programming

2.3.2 Ignorable white space

<author>

<firstname>Simon</firstname>

<surname>Pepping</surname>

</author>

\processcommacommand[articleinfo,authorgroup,author,affiliation]%

\defineXMLDBstripspace

\defineXMLenvironment[xxx]

{\XMLDBpushelement{\currentXMLelement} \XMLDBdospaces}

{\XMLDBpopelement \XMLDBdospaces}

• Ignore spaces in element xxx if applicable

• Ignore spaces in the parent if applicable

<para><!-- Do not ignore spaces at start -->2nd

description.<indexterm><!-- Ignore spaces at start -->

<primary>Some term</primary>

</indexterm><!-- Do not ignore spaces at end --> More

text.</para><!-- Ignore? spaces at end -->

close

Programming

2.3.3 Every element

\defineXMLenvironment[xxx][id=\undefined]

{\XMLDBpushelement\currentXMLelement

\XMLDBseparator \XMLDBdospaces}

{\XMLDBpopelement \XMLDBdospaces}

• Clear out the id attribute

• Push the element on the context stack

• Place the separator, if any

• Ignore spaces if applicable

• Pop the element from the context stack

• Ignore spaces if applicable

close

Programming

2.4 Which element is next?

close

Programming

2.4.1 Is there a title?

Abstract may but need not have a title. If it does not have a title, I want to
print a default title ‘Abstract’. Similarly for Preface.

<abstract>

<!-- optional title -->

⇐ How do I know whether I am past a possible title?

<!-- formalpara or para or simpara -->

</abstract>

close

Programming

2.4.1.1 Implementations

• Option 1:

− Let element title store its value in a macro.
− Redefine para, formalpara, simpara to typeset the title or the default

title. Then reset to original mapping.

Not very generic; in legalnotice, preface other elements need to be re-
defined.

• Option 2:

− Output abstract in \vbox.
− Let element title store its value in a macro.
− Typeset title or default title.
− \unvbox the abstract.

A \vbox spoils vertical spacing.

close

Programming

• Option3 :
− Save the abstract.
− Scan the text of the abstract for the word <title.
− If it does not occur, typeset the default title.
− Typeset the abstract.
Saving text makes it impossible to redefine \catcodes.

Option 3 is currently used.

close

Programming

2.4.2 The title comes later

chapter, section, figure, table do have a required title. But the title comes
later:

<section>

<title>The title comes later</title>

<para><code>chapter</code>, etc.

XML and TEX have a different approach to titles and the parts they belong
to.

In XML they are separated, in TEX they are combined in one command.

This is the difference between a structuring language and an authoring lan-
guage.

close

Programming

2.4.3 Sectioning

A ConTEXt document consists of frontmatter, bodymatter, appendices and
backmatter, which are called section blocks.

A Docbook document does not have such parts.

The first element that cannot be in frontmatter, starts bodymatter.

A Docbook book’s bodymatter starts with the first part, chapter, article
or reference.

A Docbook article’s bodymatter starts with the first calloutlist, glosslist,
itemizedlist, orderedlist, segmentedlist, simplelist, variablelist,
caution, etc. (56 elements).

All these elements execute \mayensurebodymatter:

If they are at nesting depth 2, and we are still in the front matter, close front
matter and open body matter.

Similarly for the other section blocks.

This is one case where TEX grouping runs counter to the XML tree structure:
the start of a node closes a TEX group. It makes the name of the current
element (\currentXMLelement) and its attribute values disappear.

close

Programming

2.5 Specific elements

close

Programming

2.5.1 Tables

Docbook uses the CALS table model. ConTEXt uses its TABLE environment,
also called natural tables. Both are rather similar.

There are three main complications.

• The frame attribute of the CALS table has no equivalent in ConTEXt.

• Multiple tgroup elements, each with their own number of columns, and
their own alignment and frame settings.

• Each tgroup may have its own thead and tfoot elements, with their own
alignment and frame settings.

Solution:

The table element generates a ConTEXt table, i.e. the table float, using the
\placetable command.

Each tgroup element generates its own TABLE environment, i.e. the actual
table.

The table is not openend by the start tag of the table, because at that moment
the title is not yet known.

The TABLE is not ended by the end tag of the tgroup, because we do not
know if it is the last tgroup, which has the bottom frame.

close

Programming

2.5.1.1 Example table

A table with three tgroups:

1 2 3 4

A B C D

EEEE F G H

I J K L

M N O P

1 2 3 4

1 2 3

A B C

E FFFF G

I J K

M N O

1 2 3 4

A B C D

E F GGGG H

I J K L

M N O P

1 2 3 4

close

Programming

2.5.2 Revision history

Revision History

Revision Date Remark

0.1 27 December 2002 First draft for MAPS

0.2 31 January 2003 Final version for MAPS

0.3 31 March 2003 Presentation for DANTE meeting

0.4 20 June 2003 Presentation for EuroTEX2003

Of the five possible columns revnumber, date, authorinitials, revdescription,
revremark only those are printed which have data.

This is achieved by processing the revision history twice.

• Save the revision history.
• Define the elements such that the revisions are counted and the used columns

are registered.
• First pass.
• Redefine the elements such that the table is typeset, with the columns used.
• Second pass.

Reprocessing is a powerful feature of TEX macro processing. It is used often
in ConTEXt. It takes some time before one has a good grasp of this pattern.

close

Programming

2.5.3 Program listing

Statement: programlisting is verbatim:

<programlisting>

#include "string.h"

void *memset (void *s, int c, size_t n);

</programlisting>

Not quite, it does enable XML markup:

<programlisting>

#include <string.h>

void *memset (void *s, int c, size_t n);

</programlisting>

close

Programming

2.5.4 CDATA

Statement: CDATA is verbatim:

<![CDATA[

#include <string.h>

void *memset(void *s, int c, size_t n);

]]>

Not quite, it just disables XML markup:

<para><literal>#include <![CDATA[<string.h>]]></literal>

includes a system header file.</para>

Conclusion:

• programlisting indicates line oriented layout,
• CDATA disables XML markup.

close

Programming

2.5.5 Line oriented layout

ConTEXt’s line oriented layout macros use line scanning. The line after </programlisting>
is scanned with the wrong \catcodes. That could produce extra linebreaks:

<para>The line <programlisting>

#include "string.h"

</programlisting>includes

a system header file.</para>

programlisting uses some simple macros to enable line oriented layout.

\def\obeyedline{\strut\par}

\def\obeyedspace{\strut\space}

Active ^^M characters and \struts take care of line oriented layout, preserving
spaces at the start of the line.

close

Programming

2.5.6 Hyperlinks, URLs and external documents

Two types of links:

• external documents, i.e. local PDF documents,
ConTEXt’s \useexternaldocument;

• web documents and non-PDF local documents,
ConTEXt’s \useURL.

Requires analysis of the given link:

• Is there a scheme (e.g. http)?

• If not, or if the scheme is file, it is a local file.

• If it is a local file, is it a PDF file? If so, use \useexternaldocument.

• If it is not a PDF file, if the URI is relative, make it complete.

• If it is not a local file, or if it is not a PDF file, use \useURL.

close

Programming

2.5.6.1 Examples of ulink URLs

Local PDF files:

<ulink url="file://localhost/DIC/SAX-doc.pdf">SAX-doc.pdf</ulink>

<ulink url="/DIC/SAX-doc.pdf">SAX-doc.pdf</ulink>

<ulink url="SAX-doc.pdf">SAX-doc.pdf</ulink>

Scheme http:

<ulink url="http://www.hobby.nl/DIC/SAX-doc.html">SAX-doc.html</ulink>

<ulink url="http://localhost/DIC/SAX-doc.html">SAX-doc.html</ulink>

Local non-PDF files (scheme file):

<ulink url="/DIC/SAX-doc.html">SAX-doc.html</ulink>

<ulink url="SAX-doc.html">SAX-doc.html</ulink>

Problem: Are these (abbreviated) URLs or local files?

<ulink url="www.dante.de">DANTE</ulink>

<ulink url="dante.html">DANTE program</ulink>

User may choose with \XMLDBcheckabbrURItrue or \XMLDBcheckabbrURIfalse.

close

Next, Where, Who

3 Next, Where, Who

close

Next, Where, Who

3.1 Future plans

• Docbook In ConTEXt should be integrated in the ConTEXt distribution.

• Docbook is a complex DTD. Presenting Docbook documents is therefore a
complicated task. Currently there are three efforts to do so:

− Docbook XSLT stylesheets
− Docbook in ConTEXt
− Docbook to ConTEXt via XSLT

Why so many efforts to present Docbook? Large user communities can
support multiple solutions to the same problem. It depends on the user
community, not only on me.

Docbook in ConTEXt could be further developed

− as a ConTEXt module, or
− as an Open Source project on Sourceforge.

• Other useful efforts:

− TEX as a FO processor (SR’s passivetex)
− Unicode enabled TEX
− Extensible TEX

I want to spend more attention to these efforts.

close

Next, Where, Who

3.2 Availability

Docbook In ConTEXt is available separately from the ConTEXt distribution,
from my web site http://www.hobby.nl/~scaprea/context.

Michael Wiedmann’s web page with Docbook tools http://www.miwie.org

/db-context/index.html has a link to the Docbook In ConTEXt files.

close

Next, Where, Who

3.3 Acknowledgement

Michael Wiedmann contributed the mappings for several elements, a.o. ulink,
table and mediaobject.

He also contributed the implementation of string literal files, and the string
literals for English and German.

Giuseppe Bilotta contributed the string literals file for Italian.

Pablo Rodriguez contributed the string literals file for Spanish.

Richard Rascher-Friesenhausen contributed the mappings for several elements,
and came up with the idea of a customized module.

He also contributed a well-organized framework for the documentation of the
Docbook In ConTEXt, which I intend to apply.

And of course, nothing of this would have been possible without Hans Hagen’s
ConTEXt. ConTEXt is the framework upon which Docbook In ConTEXt runs
and a rich source of examples of excellent TEX macro programming.

close

